Comparing the genetic architecture and potential response to selection of invasive and native populations of reed canary grass
نویسندگان
چکیده
Evolutionary processes such as migration, genetic drift, and natural selection are thought to play a prominent role in species invasions into novel environments. However, few empirical studies have explored the mechanistic basis of invasion in an evolutionary framework. One promising tool for inferring evolutionarily important changes in introduced populations is the genetic variance-covariance matrix (G matrix). G matrix comparisons allow for the inference of changes in the genetic architecture of introduced populations relative to their native counterparts that may facilitate invasion. Here, we compare the G matrices of reed canary grass (Phalaris arundinacea L.) populations across native and invasive ranges, and between populations along a latitudinal gradient within each range. We find that the major differences in genetic architecture occur between populations at the Northern and Southern margins within each range, not between native and invasive populations. Previous studies have found that multiple introductions in introduced populations caused an increase in genetic variance on which selection could act. In addition, we find that differences in the evolutionary potential of Phalaris populations are driven by differences in latitude, suggesting that selection also shapes the evolutionary trajectory of invasive populations.
منابع مشابه
Reed Canary Grass (Phalaris arundinacea) as a Biological Model in the Study of Plant Invasions
II. PHALARIS ARUNDINACEA L. (REED CANARY GRASS) AS AN INVASIVE SPECIES ................................ 417 A. General Features of Reed Canary Grass in Its Native Range ............................................................................ 417 B. The Repeated Introductions of Reed Canary Grass and Its Subsequent Invasion in North America ...................... 417 C. Ecological Impacts of...
متن کاملIncreased genetic variation and evolutionary potential drive the success of an invasive grass.
Despite the increasing biological and economic impacts of invasive species, little is known about the evolutionary mechanisms that favor geographic range expansion and evolution of invasiveness in introduced species. Here, we focus on the invasive wetland grass Phalaris arundinacea L. and document the evolutionary consequences that resulted from multiple and uncontrolled introductions into Nort...
متن کاملPotential selection in native grass populations by exotic invasion.
Ecological impacts of invasive plant species are well documented, but the genetic response of native species to invasive dominance has been often overlooked. Invasive plants can drastically alter site conditions where they reach dominance, potentially exerting novel selective pressures on persistent native plant populations. Do native plant populations in old exotic invasions show evidence of s...
متن کاملGenetic Similarities Among Iranian Populations of Festuca, Lolium, Bromus and Agropyron Using Amplified Fragments Length Polymorphism (AFLP) Markers
The study of genetic variation and phylogenetic relationships is essential for the efficient selection of superior plant material and conducting introgression breeding programs. In Iran, despite the wide geographical distribution of grasses no report is available on the genetic diversity and relationships of cool season grass populations. In this study amplified fragment length polymorphism (AF...
متن کاملGenome size reduction can trigger rapid phenotypic evolution in invasive plants.
BACKGROUND AND AIMS The study of rapid evolution in invasive species has highlighted the fundamental role played by founder events, emergence of genetic novelties through recombination and rapid response to new selective pressures. However, whether rapid adaptation of introduced species can be driven by punctual changes in genome organization has received little attention. In plants, variation ...
متن کامل